Cryptococcal osteomyelitis in a child with a novel compound mutation of the IL12RB1 gene

Orathai Jirapongsananuruk,1 Voravich Luangwedchakarn,2 Julie E. Niemela,3 Punchama Pacharn,1 Nualanong Visitsunthorn,1 Charin Thepthai,2 Pakit Vichyanond,1 Surapon Piboonpocanun4 and Thomas A. Fleisher3

Summary

The IL-12p40/IL-12Rβ1 and IFN-γR1/IFN-γR2/STAT1 signaling pathways are important for clearing intracellular bacteria. Genetic defects within these pathways are associated with increased susceptibility to intracellular pathogens. Among these, IL-12Rβ1 deficiency is the most common defect and leads to infections with Salmonella and Mycobacterium spp.

We report a child who presented with Cryptococcal osteomyelitis and history of disseminated Mycobacterial infection and recurrent Salmonella septicemia. Flow cytometry showed defective expression of IL-12Rβ1. Mutation analysis revealed a novel compound heterozygous mutation of IL12RB1, c.625C>T, p.Q209X was found in exon 7 on the paternal allele and c.710delC, p.P237HfsX5 was found in exon 8 on the maternal allele. As these mutations each result in a stop codon before the last spliceable exon, the transcripts likely underwent nonsense mediated decay, leading to a lack of IL12Rβ1 expression on the cell surface and eradicating signaling via the IL12 signaling pathway. (Asian Pac J Allergy Immunol 2012;30:79-82)

Key words: Cryptococcal osteomyelitis, IL-12Rβ1 deficiency, Mycobacterial infection, recurrent Salmonella infection

Introduction

Interleukin (IL)-12 is a major cytokine for initiating a response to intracellular organisms. IL-12 consists of 2 subunits, p40 and p35 chains, and is produced by antigen presenting cell upon contact with bacteria or bacterial products. IL-12 binds to its receptor on activated T cells and NK cells inducing the production of IFN-γ, the major cytokine for Th1 mediated immunity. The IFN-γ receptor consists of IFN-γR1 and IFN-γR2 that are constitutively expressed on monocytes and macrophages. Activation of IFN-γR induces the phosphorylation and homo-dimerization of the signal transducer and activator of transcription 1 (STAT1). The IL-12 receptor consists of IL12Rβ1 and IL12Rβ2 chains and T cells that fail to express IL-12Rβ1 do not produce IFN-γ upon exposure to IL-12.

Both the IL-12p40/IL-12Rβ1 and IFN-γR1/IFN-γR2/STAT1 systems are important for clearing intracellular bacteria. Mutations of IL12P40, IL12RB1, IFNGR1, IFNGR2 and STAT1 have all been reported in patients susceptible to Mycobacterium spp. Among these defects, IL12RB1 deficiency is the most common genetic etiology observed. The clinical phenotype of IL12RB1 deficient patients includes infections with Mycobacterium spp. and Salmonella spp.

We report a child who presented with Cryptococcal osteomyelitis as well as a history of disseminated Mycobacterial infection and Salmonella septicemia. Investigation revealed a lack of IL12Rβ1 on the cell surface and mutation analysis confirmed novel mutations affecting IL12RB1.

Case Report

A 3 year-old boy was referred to Siriraj Hospital, Mahidol University for suspected primary immunodeficiency. He had a history of swelling and tenderness of the right ankle for 6 months and had been diagnosed as having chronic osteomyelitis of
the right calcaneous with septic arthritis of the subtalar joint. The cultures from open drainage at the site of infection obtained by curettage and draining pus from the right calcaneous revealed Cryptococcus neoformans. Amphotericin B was given for 9 weeks and he was then switched to oral fluconazole 100 mg daily. He had previously been diagnosed with disseminated Mycobacterial infection involving the lungs and right axillary lymph nodes when he was 9 months of age. The chest X-ray at that time revealed alveolar infiltrates of both lungs. The PPD skin test showed induration of 18 mm but the sputum was negative for AFB. A lymph node biopsy showed inflammation with granulomas and numerous acid fast bacilli. He was successfully treated with anti-tuberculous drugs for 6 months. He also had a history of recurrent Salmonella group D septicemia 3 times between 18 and 36 months of age. The patient is the only child in the family and there was no history of consanguinity. The parents have not had frequent infections or any known risk of HIV infection and the family history did not reveal anything suggestive of primary immunodeficiency.

Physical examination revealed an afebrile Thai boy with the weight and height in the 10th percentile. Multiple cervical and inguinal lymph nodes were palpable at 1.5 cm. in diameter without tenderness but there was no hepatosplenomegaly. The right ankle was not swollen and demonstrated a healed surgical scar.

The complete blood count showed a hemoglobin of 8.3 g/dL, hematocrit of 27%, white blood cell count of 25,300/mm³ with 76% neutrophils, 13% lymphocytes, 10% monocytes and 1% basophils, and a platelet count of 324,000/mm³. The erythrocyte sedimentation rate was 76 mm/hr and the anti-HIV antibody test was non-reactive. The immunoglobulin levels and CD3, CD4, CD8, CD19 and NK cell counts were normal as was the dihydrorhodamine assay. The cell surface expression of IFN-γR1 and IL-12Rγ1 were studied by flow cytometry. The IFN-γR1 expression of the patient’s monocytes was normal. However, the IL-12Rγ1 expression of PHA-stimulated mononuclear cells (activated T cells) was absent as shown in Figure 1 and a preliminary diagnosis of IL-12Rγ1 deficiency was made. Mutation analysis confirmed this with the finding of compound heterozygous mutations of IL12RB1 consisting of c.625C>T, p.Q209X (exon 7) and c.710delC, p.P237HfsX5 (exon 8). Mutation analysis of IL12RB1 in the mother and father revealed the c.710delC, p.P237HfsX5 (exon 8) mutation and the c.625C>T, p.Q209X (exon 7) mutations, respectively (Figure 2)

The Cryptococcal osteomyelitis was treated with fluconazole for 2 years. After that, he was switched to itraconazole for fungal prophylaxis and also maintained on cotrimoxazole for Salmonella prophylaxis and azithromycin for Mycobacterium prophylaxis. He has been well without serious infection for the past 3 years up to the time of this report.

Discussion

In a patient with unusual, severe infections caused by poorly pathogenic Mycobacterium and Salmonella spp., a defect in the IFN-γ and IL-12 pathways should be considered. IL-12Rβ1 deficient and IL-12p40-deficient patients have a history of infection with Salmonella spp. (about 50%) more frequently when compared to IFN-γR1/IFN-γR2/STAT1-deficient patients. The latter are consistently infected with Mycobacterium spp. but only infrequently infected with Salmonella spp. Other infectious organisms which have been occasionally reported in IL-12Rβ1 deficiency include Klebsiella spp., Citrobacter freundii, Paracoccidioides brasiliensis, Toxoplasma gondii, Histoplasma spp., Leishmania spp., and Nocardia spp.
Cryptococcal osteomyelitis is an unusual presentation for IL-12Rβ deficiency. Cryptococcus neoformans is a yeast found in soil contaminated with bird droppings. The central nervous system and the lung are most frequently infected. There are infrequent reports of Cryptococcal arthritis, cellulitis, hepatitis, prostatitis, vaginitis, infection of the urinary tract and the intestine. Cryptococcal osteomyelitis is a rare disease occurring in 5-10% of disseminated Cryptococcal infection. Infection with C. neoformans is observed most frequently in immunocompromised patients with phagocyte or severe T cell immunodeficiency. The most common among these are patients infected with human immunodeficiency virus. In primary immunodeficiency, Cryptococcus has been reported as a cause of infection in X-linked hyper-IgM syndrome, hyper-IgE syndrome, idiopathic CD4 lymphopenia and X-linked agammaglobulinemia. Disseminated Cryptococcal infection was first reported in a child with IL-12Rβ1 deficiency in Iran and to our knowledge the case reported here is the second case of IL-12Rβ1 deficiency associated with Cryptococcal infection.

In this patient, IL-12Rβ1 deficiency was confirmed by mutation analysis of IL12RB1. The IL12RB1 gene includes 17 exons, encoding a gp130-like protein, formed by an extracellular domain (with cytokine binding region), a transmembrane domain and an intracellular domain. Various types of IL12RB1 mutations have been reported, including nonsense, missense, splice mutations, microdeletions, microinsertions, microduplications, and large deletions. All of these mutations are recessive and result in loss of receptor function. In this patient, the mutation in exon 7, c.625C>T affecting the paternal allele resulted in a stop codon at amino acid Q209 (Figure 2). The mutation in exon 8, c.710delC affecting the maternal allele resulted in a frameshift at amino acid P237 and a stop codon at position 5 in the shifted reading frame.

![Figure 2. Mutation analysis of IL12RB1 exon 7 and 8 of a normal subject, the patient and his mother and father. Where the A of the ATG start codon is numbered +1, the sequence of IL12RB1 exon 7 of the patient and his father reveals a substitution of C with T at cDNA position 625, which results in an immediate stop codon at amino acid Q209. In exon 8 (reverse sequencing data shown), deletion of C at cDNA position 710 in the patient and his mother results in a frameshift at amino acid P237 and a stop codon at position 5 in the shifted reading frame.](image-url)
signaling and increased susceptibility to Mycobacterial and Salmonella infection as well as Cryptococcal infection.

References
1. van de Vosse E, Ottenhoff TH. Human host genetic factors in mycobacterial and Salmonella infection: lessons from single gene disorders in IL-12/IL-23-dependent signaling that affect innate and adaptive immunity. Microbes Infect. 2006;8:1167-73.